A. System Identification (Week 1)
Last updated
Was this helpful?
Last updated
Was this helpful?
The purpose of this experiment is to understand the existence of vibrations in a rotary flexible link and the resulting mode shapes. Any beam-like structure exhibits vibrations either due to external changing loads or due to reorientation via actuators. The experiment deals with the modeling and identification of modal frequencies and mode shapes of free vibrations for a rotary flexible link. This analysis is particularly useful to understand structural vibrations and modes and how to contain them in real-world applications like aircraft and spacecraft structures as well as robotic links/manipulators.
This experiment involves system identification and modeling of the flexible link. The objective is to find the stiffness of the flexible link and conduct a frequency sweep across a range to determine the structural frequencies and mode shapes of the link.
The main components of the setup are labeled in Figs. 2 and 3 and are listed in Table 1.
Table 1. Setup Components
No.
Component
1
SRV02 Plant (Servo motor)
2
FLEXGAGE Module
3
FLEXGAGE Link
4
Strain Gauge
5
Strain Gauge Circuit
6
Thumbscrews
7
Sensor Connector
8
OFFSET Potentiometer
9
GAIN Potentiometer
The FLEXGAGE module consists of the strain gauge, the strain gauge circuitry, and a sensor connector. The flexible link is attached to this module and the strain gauge is fixed at the root of the link. The module is mounted onto the servo motor, which is the actuator for this system. The strain gauge sensor produces an analog signal proportional to the deflection of the link tip.
where the various constants are SRV02 parameters which are mentioned in Table 2.
Table 2. Setup Parameters
Mass of flexible link
Length of flexible link
Width or breadth of flexible link
Thickness of flexible link
Young’s modulus of flexible link
Area moment of inertia of link cross-section
High-gear viscous damping coefficient of SRV02
Equivalent high-gear moment of inertia of SRV02 (no load)
Motor armature resistance
Motor torque constant
Motor efficiency
Back-emf constant
High-gear total gearbox ratio
Gearbox efficiency
Viscous damping coefficient of flexible link
To be calculated
Moment of inertia of flexible link about pivoted end
To be calculated
Stiffness of flexible link
To be calculated
Mass per unit length of flexible link
To be calculated
The prototype characteristic polynomial for a second-order system is defined as
The damping ratio of this second-order system can be found from its response (underdamped system) using the subsidence or decrement ratio given by
The damping ratio is defined as
The period of oscillation in a system response can be found using the equation
From this, the damped natural frequency (in rad/s) is
and the undamped natural frequency is
Mount the flexible link onto the calibration bench.
Download and open FlexLink_FreeOsc_Q2_USB.slx. This is the block diagram for this part of the experiment. Change the simulation time to 5-10 seconds.
Open the scope alpha.
Turn on the power supply.
Check you have good data and save the link deflection angle data for the free oscillation using the filename FreeOsc_1 to your folder.
Repeat the steps 7 and 8 two more times for different perturbation locations along the link (for example, around the middle and near the base) or different perturbation angles.
Plot the measured angular deflection of the link vs. time for each case. Select peaks that are smooth (focus on the region after initial transients) as shown in the figure below. Ensure that there are at least 4-5 peaks in between the two chosen peaks.
Option: Usage offindpeak
MATLAB function might be helpful, but not required. If you use this function, verify the peaks identified.
From the peaks selected, determine the time period of oscillation. Use this information to determine the damped frequency, the undamped frequency, the damping ratio, the stiffness, the viscous damping coefficient and the moment of inertia of the flexible link.
Average the stiffness and the viscous damping coefficient values of the link for the three sets of data to get a single value of the link stiffness and damping coefficient.
The flexible link can be considered as a thin continuous (uniform) cantilever beam anchored at one end and free at the other end. Using the Euler-Bernoulli beam theory, the equation of motion can be written as
The general solution to Eq. (1.15) can be obtained using separation of variables, as in Eq. (1.17) below.
Equation (1.18) can be rewritten as
The constants in Eq. (1.22) are determined from four boundary conditions, while the constants in Eq. (1.23) are determined from two initial conditions.
For a clamped-free or cantilever beam, the geometric boundary conditions are
and the natural boundary conditions are
Hence, Eq. (1.22) becomes
or
For a non-trivial solution, the determinant of the above matrix must be 0, i.e.
which gives the following characteristic equation
The above equation simplifies to
There are infinite solutions to this characteristic equation, which are given by
Thus, the mode shapes are
or
The mode shapes of a uniform cantilever beam are shown in Fig. 7.
In order to determine the modal frequencies and mode shapes, the corresponding frequencies can be excited by providing a sinusoidal input to the link via external means. When the frequency of the input coincides with either the fundamental frequency or higher frequency modes, the corresponding modes will be excited due to resonance and their mode shapes can be observed physically. Hence, the following experiment involves a frequency sweep across a range provided as input to the flexible link via the servo motor to identify the frequencies and observe the corresponding mode shapes.
Using Eqn. 1.26 and the values of necessary system parameters, calculate the first and second modal frequencies.
Mount the flexible link onto the rotary servo base.
Download and open FlexLink_ExciteMode.mdl
Open the scope alpha.
Turn on the power supply.
Ensure that the manual switch is connected to the Chirp signal input. This signal will provide a sinusoidal signal of fixed amplitude, with frequency increasing at a linear rate with time.
Open the Chirp signal command block and make sure that the Initial frequency is 0.1 Hz, the target time is 0.25 s and the Frequency at target time is 0.2 Hz. This will allow the frequency sweep to take place at a reasonable rate and ensure that the relevant frequencies are covered within the span of time.
Save the data using the format Osc_ChirpSignal into your folder.
Plot the measured angular deflection of the link vs. time. Using the time domain plot, perform frequency analysis using Fast Fourier Transform (FFT) [refer to the Appendix for the code] or a similar technique to identify the number of dominant frequencies and their magnitudes present in the signal.
Again, open the FlexLink_ExciteMode.mdl Simulink file used in part 2.
Open the scope alpha.
Turn on the power supply.
Connect the manual switch to the Sine wave signal input. This signal will provide a sinusoidal signal of fixed amplitude and fixed frequency.
Open the Sine wave signal command block and make sure that the Amplitude is 3 and Phase is 0 rad. Enter the first modal frequency determined from Q2 of the calculations in rad/sec.
Tune the frequency value by increasing or decreasing in steps of 1 rad/sec until the first mode shape is clearly visible.
Observe the corresponding mode in the link and note down the number of nodes and their locations with respect to length of the link.
Save the data using the file name Osc_Sineinput into your folder.
Repeat steps 6 to 10 for the second modal frequency also identified from Q2 of the calculations.
Record the number of nodes and their locations for each mode. Determine the locations as a ratio of the link length and compare them with the values obtained from the mode shape plots.
Plot of the measured angular deflection of the link vs. time with the chosen peaks marked for each dataset, i.e., three plots corresponding to three perturbation locations. Plot as three subplots in one figure.
Equations for time period of oscillation, damped frequency, undamped frequency, damping ratio, stiffness and viscous damping coefficient.
Calculations and values for the theoretical first and second modal frequencies (calculated using Eqn. 1.26).
Plot of measured angular deflection of the link vs. time
Fast Fourier Transform (FFT) plot of link deflection with dominant frequencies and their magnitudes identified (either marked on plot or mentioned in writing).
Compare the first and second dominant frequencies obtained from the FFT with the corresponding calculated first and second modal frequencies (Result A.4) and explain your observation.
1st and 2nd Mode shapes (theoretical and experimental) plotted on the same graph with node locations marked. (plot v(x) vs x/L)
Number of nodes and their locations for each mode (theoretical and experimental). Use Table B.2 to document the values.
Comparison of experimental and theoretical mode shapes/node locations given and state the reason(s) for why they differ.
First
1
First
...
First
Second
1
Second
...
Second
Compare the damped and undamped frequencies of the link and report your observation. What does this signify with respect to the flexible link damping?
The following code performs FFT analysis on the flexible link angle response
This experiment is performed using the Quanser Rotary Flexible Link mounted on an SRV-02 servo motor. This system, shown in Fig. 1, consists of an electromechanical plant, where a flexible link is rotated using a servo motor. The base of the flexible link is mounted on the load gear of the servo motor system. The servo angle, , increases positively when it rotates counter-clockwise (CCW). The servo (and thus the link) turn in the CCW direction when the control voltage is positive, i.e., .
The link can be schematically represented as shown in Fig. 4. The flexible link has a total length of , a mass of , and its moment of inertia about the pivoted end is . The deflection angle of the link is denoted as and increases positively when rotated CCW.
The complete flexible link system can be represented by the diagram shown in Fig. 5. The control variable is the input servo motor voltage, which is proportional to the angular rate of the servo motor. This generates a torque , at the load gear of the servo that rotates the base of the link, which is given by\tau=\displaystyle{\frac{\eta_g K_g\eta_mk_t(V_m-K_gk_m\dot{\theta})}{R_m}}=C_1V_m-C_2\dot{\theta} \qquad \qquad \qquad\tag{1.1}
The viscous friction coefficient of the servo is denoted by . This is the friction that opposes the torque being applied at the servo load gear. represents the moment of inertia of the SRV02 when there is no load. The friction acting on the link is represented by the viscous damping coefficient . The flexible link is modeled as a linear spring with the stiffness and with moment of inertia .
The servo and the flexible link can be modeled as a lumped mass system separated by an equivalent spring and damper, which represent the stiffness and damping coefficient of the flexible link, respectively. The equations that describe the motion of the servo and the link with respect to the servo motor torque, i.e., the dynamics, can be obtained using free body diagram (FBD) analysis of the lumped mass moments of inertia ( and ).
The torque balance on yield Eq. (1.2) and the torque balance on yield Eq. (1.3).
On rearranging Eq. (1.3) to obtain an expression for and substituting it in Eq. (1.2), the equations of motion (EOM) for the rotary flexible link system can be obtained as
The stiffness of the flexible link can be determined from the free oscillation of the link using a second-order model. The free-oscillatory equation of motion of this second-order system is obtained by setting the term to zero in Eq. (1.5), i.e., by holding constant, which is shown in Fig. 6. The resulting equation will be
Assuming the initial conditions and , the Laplace transform of Eqn. 1.6 yields:
where is the damping ratio and is the natural frequency. Equating this to the characteristic polynomial (denominator) in Eq. (1.7) yields
where represents the moment of inertia of the link about the pivot. This can be calculated approximately by considering the link as a rod rotating about a pivot at one edge . Equations (1.8) and (1.9) can be used to determine the stiffness and damping of the flexible link once the natural frequency and damping ratio are known.
where is the peak of the first oscillation and is the peak of the nth oscillation. Note that , as this is a decaying response (positive damping).
where is the time of the oscillation, is the time of the first peak, and is the number of oscillations considered.
To build the model, click the down arrow on Monitor & Tune under the Hardware tab and then click Build for monitoring . This generates the controller code.
Press Connect button under Monitor & Tune and hold on to the base to prevent any rotation at the root.
Press Start and immediately perturb the flexible link (for example, at the tip). Keep holding the base until the data is collected for the complete run.
where is the modulus of rigidity of beam material (assumed constant), is the area moment of inertia of the beam cross-section (assumed constant), is the displacement in direction at a distance from the fixed end at time , is the circular natural frequency, is the mass per unit length (, is the material density, is the cross-section area), is the distance measured from the fixed end and is the external applied force per unit length.
Also, the angle of deflection is related to the displacement as
Substituting (1.17) in (1.15), setting and rearranging gives
Since the left side of Eq. (1.19) is only a function of and the right side of Eq. (1.19) is only a function of , they both must equal a constant. Let this constant be . Thus, Eq. (1.19) can be written as the following two equations
The solution of Eq. (1.20) gives the displacement(as a function of), which will be of the form
where and are unknown constants. The general solution of Eq. (1.21) is given by
where , and are unknown constants.
where represents the bending moment and represents the shear force.
On substitution of the geometric boundary conditions at in Eq. (1.22) and its derivative, the following relations can be obtained
On further substitution of the natural boundary conditions at in the derivatives of Eq. (1.24) yields
Since , the modal frequencies are given by
is mass per unit length
Using the system parameters provided in Table 2, determine the mass per unit length of the beam .
To build the model, click the down arrow on Monitor & Tune under the Hardware tab and then click Build for monitoring . This generates the controller code.
Press the Connect button under Monitor & Tune and click on Start . Run the servo motor with the chirp input voltage for 60 seconds.
To build the model, click the down arrow on Monitor & Tune under the Hardware tab and then click Build for monitoring . This generates the controller code.
Press Connect button under Monitor & Tune and Press Start . Run the servo motor with the sine wave for at least 20 seconds.
Plot the mode shapes using Eq. (1.25) in MATLAB (plot v(x) vs x/L) and record the node locations. Plot both theoretical shape and experiment shape. For theoretical, use and from and for experimental, use two mode frequencies from FFT and to find .
Values of the damped frequency , the undamped frequency , the damping ratio , the stiffness and the viscous damping coefficient of the link for each dataset, along with the corresponding average , , , and value. Use Table B.1 to document these values.
Calculation for mass per unit length of the link and moment of inertia of inertia of the link ()
Compare the first dominant frequency (from FFT) with the natural frequency of the flexible link and state your observations. Explain any similarities or differences observed and the reasons behind them.